Université de Caen L3

TD nº 1 : Distributions

Rappels. On note \mathcal{D} l'espace des fonctions C^{∞} à support compact sur \mathbb{R} . On notera \mathcal{D}' l'espace des distributions sur \mathbb{R} . Etant donné une fonction f localement intégrable sur \mathbb{R} , on note $\{f\}$ la distribution régulière associée définie par

$$\langle \{f\}, \varphi \rangle = \int_{\mathbb{R}} f(x)\varphi(x)dx, \quad \varphi \in \mathcal{D}.$$

On définit δ par $\langle \delta, \varphi \rangle = \varphi(0)$ et δ_x par $\langle \delta_x, \varphi \rangle = \varphi(x), \varphi \in \mathcal{D}$.

Exercice 1. Soient $x \in \mathbb{R}$ et α une fonction de classe C^{∞} sur \mathbb{R} . Montrer que

$$\alpha \delta_x = \alpha(x) \delta_x.$$

En particulier montrer que $x\delta = 0$.

Exercice 2. Pour tout $a \in \mathbb{R}$, on définit la translaté de φ de pas -a en posant $(\tau_a \varphi)(x) = \varphi(x-a)$. De plus, pour tout $T \in \mathcal{D}'$, on définit la translaté de T de pas -a par

$$<\tau_a T, \varphi> = < T, \tau_{-a} \varphi>, \qquad \varphi \in \mathcal{D}.$$

Soient $a \in \mathbb{R}$ et $T \in \mathcal{D}'$. Montrer que

$$(\tau_a T)' = \tau_a(T').$$

Exercice 3. On rappelle la formule des sauts : si f est C^1 par morceaux et a plusieurs sauts a_1, \ldots, a_p , alors

$$\{f\}' = \{f'\} + \sum_{k=1}^{p} \sigma_{a_k} \delta_{a_k},$$

avec $\sigma_{a_k} = \lim_{x \to a_k^+} f(x) - \lim_{x \to a_k^-} f(x)$, la taille du saut de f en a_k . Calculer les dérivées des distributions

$$T_1 = \{H\}, \qquad T_2 = \{|x|\}, \qquad T_3 = \{\Pi\}, \qquad T_4 = \{\operatorname{sgn}\}, \qquad T_5 = \{E\},$$

où $H(x) = 1_{[0,\infty[}(x)$ désigne la fonction de Heaviside, $\Pi(x) = 1_{[-\frac{1}{2},\frac{1}{2}]}(x)$ la fonction porte, $\operatorname{sgn}(x)$ la fonction signe et E(x) la partie entière de x, i.e., $E(x) = n \in \mathbb{Z}$ pour $x \in [n, n+1[$.

Exercice 4.

1. Soient α une fonction de classe C^{∞} sur \mathbb{R} et $T \in \mathcal{D}'$. Montrer que

$$(\alpha T)' = \alpha' T + \alpha T'.$$

2. Calculer les dérivées des distributions suivantes:

$$T_1 = \{H\}\sin(x), \qquad T_2 = \{H\}\cos(x), \qquad T_3 = \{\Pi\}\sin(\pi x).$$

Université de Caen L3

Exercice 5.

1. Soit α une fonction de classe C^{∞} sur \mathbb{R} . Montrer que

$$\alpha \delta' = \alpha(0)\delta' - \alpha'(0)\delta.$$

- 2. Calculer $\sin(x)\delta'$, $\cos(x)\delta'$, $x^2\delta'$.
- 3. Déterminer une formule permettant de calculer $\alpha(x)\delta''$ puis pour tout n entier naturel $\alpha\delta^{(n)}$. Calculer alors $x\delta^{(n)}$ et $x^3\delta^{(4)}$.

Exercice 6. On a vu dans l'exercice 1 que $x\delta = 0$. Réciproquement on montre (voir cours) que si xT = 0, où $T \in \mathcal{D}'$, alors $T = k\delta$ avec $k \in \mathbb{C}$.

- 1. Montrer que $x\delta' = -\delta$.
- 2. En déduire toutes les solutions dans \mathcal{D}' de l'équation $xT = \delta$.

Exercice 7. Soit $\lambda \in \mathbb{R}$.

- 1. Calculer la dérivée de la distribution $e^{\lambda x}\{H\}$.
- 2. A l'aide de la question précédente, montrer que $e^{\lambda x}\{H\}$ est une solution de l'équation $T' \lambda T = \delta$.
- 3. Résoudre l'équation $T' \lambda T = \delta$ dans \mathcal{D}' .

Exercice 8. On définit la distribution valeur principale de $\frac{1}{x}$, notée vp $\frac{1}{x}$, par

$$< \operatorname{vp} \frac{1}{x}, \varphi > = \operatorname{vp} \int_{\mathbb{R}} \frac{\varphi(x)}{x} = \lim_{\epsilon \to 0^+} \int_{|x| > \epsilon} \frac{\varphi(x)}{x} \, dx, \qquad \varphi \in \mathcal{D}.$$

- 1. Démontrer que $\{\ln(|x|)\}' = \operatorname{vp} \frac{1}{x}$.
- 2. Montrer que $x \operatorname{vp} \frac{1}{x} = \{1\}.$
- 3. En déduire les solutions des équations $xT = \{1\}$.

Exercice 9. On définit la distribution partie finie de $\frac{1}{x^2}$, notée Pf $\frac{1}{x^2}$, par

$$Pf \frac{1}{x^2} = -\left(vp \frac{1}{x}\right)'.$$

1. Montrer que pour tout $\varphi \in \mathcal{D}$,

$$< \operatorname{Pf} \frac{1}{x^2}, \varphi > = \lim_{\epsilon \to 0^+} \left(\int_{|x| > \epsilon} \frac{\varphi(x)}{x^2} dx - 2 \frac{\varphi(0)}{\epsilon} \right).$$

2. En déduire que

$$x \operatorname{Pf} \frac{1}{x^2} = \operatorname{vp} \frac{1}{x}$$
 et $x^2 \operatorname{Pf} \frac{1}{x^2} = \{1\}.$