Université de Caen M1

TD nº 5 : Régression linéaire multiple 3

Exercice 1. Soient $(k,T) \in (\mathbb{N}^*)^2$, n = kT et Z_1, \ldots, Z_n n var indépendantes telles que, pour tout $i \in \{1, \ldots, n\}$,

$$Z_i = \beta_i + \xi_i,$$

où ξ_1, \ldots, ξ_n sont n var iid suivant chacune la loi normale $\mathcal{N}(0, \sigma^2)$. On se place dans le cas T-périodique : pour tout $(u, v) \in \{0, \ldots, k-1\} \times \{1, \ldots, T\}$,

$$\beta_{uT+v} = \beta_v.$$

Les paramètres β_1, \ldots, β_T sont des réels inconnus. On pose $\beta = (\beta_1, \ldots, \beta_T)^t$.

- 1. Écrire le modèle linéaire associé sous la forme matricielle usuelle : $Y = X\beta + \epsilon$, en indiquant ce que sont ici Y, X et ϵ .
- 2. Calculer l' $emco \hat{\beta}$ de β , puis donner sa loi.
- 3. Donner un estimateur sans biais $\hat{\sigma}^2$ de σ^2 . Exprimer $\hat{\sigma}^2$ sous la forme d'une somme double.

Exercice 2. Soient $\ell \in \mathbb{N}^*$, $n \in \mathbb{N}^*$ tel que $n > 2\ell + 1$, et Z_1, \ldots, Z_n n var indépendantes telles que, pour tout $i \in \{1, \ldots, n\}$,

$$Z_i = \alpha_0 + \sum_{v=1}^{\ell} (\alpha_v \cos(x_{v,i}) + \theta_v \sin(x_{v,i})) + \xi_i,$$

où $x_{v,i} = \frac{2vi\pi}{n}$ et ξ_1, \dots, ξ_n sont n var iid suivant chacune la loi normale $\mathcal{N}(0, \sigma^2)$. Les paramètres $\alpha_0, \alpha_1, \theta_1, \dots, \alpha_\ell, \theta_\ell$ et σ sont des réels inconnus. On pose $\beta = (\alpha_0, \alpha_1, \theta_1, \dots, \alpha_\ell, \theta_\ell)^t$.

- 1. Écrire le modèle linéaire associé sous la forme matricielle usuelle : $Y = X\beta + \epsilon$, en indiquant ce que sont ici Y, X et ϵ .
- 2. On admet que, pour tout $(u, v) \in (\mathbb{N}^*)^2$.

$$\sum_{i=1}^{n} \cos(x_{v,i}) = 0, \quad \sum_{i=1}^{n} \sin(x_{v,i}) = 0, \quad \sum_{i=1}^{n} \cos(x_{v,i}) \sin(x_{u,i}) = 0,$$

$$\sum_{i=1}^{n} \cos(x_{v,i}) \cos(x_{u,i}) = \begin{cases} \frac{n}{2} & \text{si } u = v, \\ 0 & \text{sinon,} \end{cases}, \qquad \sum_{i=1}^{n} \sin(x_{v,i}) \sin(x_{u,i}) = \begin{cases} \frac{n}{2} & \text{si } u = v, \\ 0 & \text{sinon.} \end{cases}$$

Calculer l'emco $\widehat{\alpha}_0$ de α_0 et, pour tout $v \in \{1, \dots, \ell\}$, l'emco $\widehat{\alpha}_v$ de α_v et l'emco $\widehat{\theta}_v$ de θ_v .

3. Donner un estimateur sans biais $\widehat{\sigma}^2$ de σ^2 . Exprimer $\widehat{\sigma}^2$ sous la forme d'une somme faisant intervenir $(Z_i)_{i\in\{1,\ldots,n\}}, (x_{v,i})_{(v,i)\in\{1,\ldots,\ell\}} \times \{1,\ldots,n\}, \widehat{\alpha}_0, (\widehat{\alpha}_v)_{v\in\{1,\ldots,\ell\}}$ et $(\widehat{\theta}_v)_{v\in\{1,\ldots,\ell\}}$.

Université de Caen M1

Exercice 3. On considère le modèle :

$$Y = U\alpha + V\gamma + \epsilon,$$

où U est une matrice à n lignes et p_1 colonnes connue, V est une matrice à n lignes et p_2 colonnes connue, et ϵ suit la loi normale multivariée $\mathcal{N}_n(0_n, \mathbb{I}_n)$. Ici, $\alpha = (\alpha_1, \dots, \alpha_{p_1})^t$ est un vecteur inconnu de \mathbb{R}^{p_1} et $\gamma = (\gamma_1, \dots, \gamma_{p_2})^t$ est un vecteur inconnu de \mathbb{R}^{p_2} . On pose

$$P = U(U^t U)^{-1} U^t, \qquad M = \mathbb{I}_n - P.$$

Dans ce que suit, $\|.\|$ et <.,.> désignent respectivement la norme et le produit scalaire euclidiens dans \mathbb{R}^n .

- 1. Questions préliminaires.
 - (a) Montrer que PU = U, MU = 0, $P^t = P$, $P^2 = P$, $M^t = M$, $M^2 = M$ et $M^t P = 0$.
 - (b) Montrer que, pour tout vecteur A à n composantes, on a

$$< MA, PA >= 0,$$
 $||A||^2 = ||MA||^2 + ||PA||^2.$

2. En utilisant les résultats de la question 1, montrer que, pour tout $(u, v) \in \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}$,

$$||Y - Uu - Vv||^2 = ||MY - MVv||^2 + ||PY - Uu - PVv||^2.$$

3. On définit

$$\begin{cases} \widehat{\gamma} = \underset{v \in \mathbb{R}^{p_2}}{\operatorname{argmin}} \|MY - MVv\|^2, \\ \\ \widehat{\alpha} \text{ tel que } PY - U\widehat{\alpha} - PV\widehat{\gamma} = 0. \end{cases}$$

On suppose que $\widehat{\gamma}$ et $\widehat{\alpha}$ existent et sont uniques.

Montrer que, pour tout $(u, v) \in \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}$, on a

$$||MY - MVv||^2 + ||PY - Uu - PVv||^2 \ge ||MY - MV\widehat{\gamma}||^2 + ||PY - U\widehat{\alpha} - PV\widehat{\gamma}||^2.$$

En déduire que

$$(\widehat{\alpha}, \widehat{\gamma}) = \underset{(u,v) \in \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}}{\operatorname{argmin}} \|Y - Uu - Vv\|^2.$$

4. Montrer que

$$MY = MV\gamma + \epsilon^*,$$

où ϵ^* suit la loi normale multivariée $\mathcal{N}_n(0_n, M)$.

5. On suppose désormais que M est définie positive. En utilisant le résultat de l'exercice 3 de la feuille de TD 4, montrer que

$$\widehat{\gamma} = (V^t M V)^{-1} V^t M Y.$$