Université de Caen M1

TD nº 6: Méthodes d'estimation

Exercice 1. Soient a > 0, X une var dont la loi est donnée par

$$\mathbb{P}(X=0) = \frac{a}{a+1}, \qquad \mathbb{P}(X=1) = \frac{1}{a+1},$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, a est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

Déterminer un estimateur de a par la méthode des moments.

Exercice 2. Soient $\theta > -1$, X une var de densité :

$$f(x) = \begin{cases} (\theta + 1)(\theta + 2)(1 - x)x^{\theta} & \text{si } x \in [0, 1], \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, θ est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

Déterminer un estimateur de θ par la méthode des moments.

Exercice 3. Soient $p \in]0,1[, X \text{ une } var \text{ de densité} :$

$$f(x) = p \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} + (1-p) \frac{1}{\sqrt{4\pi}} e^{-\frac{x^2}{4}}, \qquad x \in \mathbb{R}.$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, p est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

Déterminer un estimateur de p par la méthode des moments.

Exercice 4. Soient $\lambda > 0$ et X une var suivant la loi de Poisson $\mathcal{P}(\lambda)$:

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \qquad k \in \mathbb{N},$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, λ est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

Déterminer l'estimateur du maximum de vraisemblance de λ .

Exercice 5. La hauteur maximale en mètres de la crue annuelle d'un fleuve est une var X de densité :

$$f(x) = \begin{cases} \frac{x}{a}e^{-\frac{x^2}{2a}} & \text{si } x \ge 0, \\ 0 & \text{sinon,} \end{cases}$$

où a > 0 est un un réel inconnu. Soient $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X.

- 1. Déterminer l'estimateur du maximum de vraisemblance \widehat{a}_n de a.
- 2. Application. Une crue supérieure à 6 mètres serait catastrophique. Pendant 8 ans, on a observé les hauteurs de crue du fleuve en mètres.

Université de Caen M1

Les résultats sont : $\boxed{2,5} \ \boxed{2,9} \ \boxed{1,8} \ \boxed{0,9} \ \boxed{1,7} \ \boxed{2,1} \ \boxed{2,2} \ \boxed{2,8}$

Donner une estimation ponctuelle de a et une estimation de la probabilité d'avoir une catastrophe une année donnée.

Exercice 6. Soient $\alpha \geq 0$, $\sigma > 0$, $\theta > 0$, $n \in \mathbb{N}^*$, (Y_1, \ldots, Y_n) un vecteur de n var telles que, pour tout $i \in \{1, \ldots, n\}$,

$$Y_i = \frac{\theta}{i^{\alpha}} + \sigma X_i,$$

où (X_1, \ldots, X_n) est un vecteur de n var iid suivant chacune la loi normale $\mathcal{N}(0,1)$. Ici, θ est un paramètre inconnu que l'on souhaite estimer à l'aide de (Y_1, \ldots, Y_n) .

- 1. Déterminer la vraisemblance et la log-vraisemblance de (Y_1, \ldots, Y_n) .
- 2. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 3. Est-ce que $\widehat{\theta}_n$ est sans biais ? Déterminer les valeurs de α pour lesquelles $\widehat{\theta}_n$ converge.

Exercice 7. Soient $\alpha > 2$, X une var de densité :

$$f(x) = \begin{cases} (\alpha - 1)x^{-\alpha} & \text{si } x \ge 1, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, α est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\alpha}_n$ de α .
- 2. On pose $\beta = \frac{\alpha 2}{\alpha 1}$. Déterminer l'estimateur du maximum de vraisemblance $\widehat{\beta}_n$ de β .

Exercice 8. Soient $\theta > 0$, X la var de densité :

$$f(x) = \begin{cases} \frac{3}{(x-\theta)^4} & \text{si } x \ge 1+\theta, \\ 0 & \text{sinon,} \end{cases}$$

 $n \in \mathbb{N}^*$ et (X_1, \dots, X_n) un n-échantillon de X. Ici, θ est un paramètre inconnu que l'on souhaite estimer à l'aide de (X_1, \dots, X_n) .

- 1. Calculer $\mathbb{E}(X \theta)$ et $\mathbb{E}((X \theta)^2)$. En déduire $\mathbb{E}(X)$ et $\mathbb{V}(X)$.
- 2. Déduire du résultat de la question 1- un estimateur $\widetilde{\theta}_n$ de θ en utilisant la méthode des moments. Calculer son risque quadratique.
- 3. Calculer l'estimateur du maximum de vraisemblance $\widehat{\theta}_n$ de θ .
- 4. Calculer la fonction de répartition de $\widehat{\theta}_n \theta$. En déduire sa densité.
- 5. Calculer le risque quadratique de $\widehat{\theta}_n$. Entre $\widehat{\theta}_n$ et $\widetilde{\theta}_n$, quel est le meilleur estimateur de θ lorsque n est supposé être grand ?
- 6. Calculer le biais de $\widehat{\theta}_n$, et en déduire un estimateur sans biais $\widehat{\theta}_n^*$ de θ . Montrer, sans calcul intégral, que, lorsque n est supposé être grand, $\widehat{\theta}_n^*$ est un meilleur estimateur de θ que $\widehat{\theta}_n$.